Difference between revisions of "PDE Geometric Analysis seminar"
(→PDE GA Seminar Schedule Spring 2017) 

Line 79:  Line 79:  
March 27  Analysis/PDE seminar  March 27  Analysis/PDE seminar  
 Sylvia Serfaty (Courant)   Sylvia Serfaty (Courant)  
−  [[#Sylvia Serfaty  ]]  +  [[#Sylvia Serfaty  MeanField Limits for GinzburgLandau vortices ]] 
 Tran   Tran  
Line 85:  Line 85:  
March 29  Wasow lecture  March 29  Wasow lecture  
 Sylvia Serfaty (Courant)   Sylvia Serfaty (Courant)  
−  [[#Sylvia Serfaty  ]]  +  [[#Sylvia Serfaty  Microscopic description of Coulombtype systems ]] 
    
Revision as of 10:47, 6 March 2017
The seminar will be held in room 901 of Van Vleck Hall on Mondays from 3:30pm  4:30pm, unless indicated otherwise.
Contents
Previous PDE/GA seminars
Tentative schedule for Fall 2017
PDE GA Seminar Schedule Spring 2017
date  speaker  title  host(s) 

January 23 Special time and location: 33:50pm, B325 Van Vleck 
Sigurd Angenent (UW)  Ancient convex solutions to Mean Curvature Flow  Kim & Tran 
January 30  Serguei Denissov (UW)  Instability in 2D Euler equation of incompressible inviscid fluid  Kim & Tran 
February 6  Wasow lecture  Benoit Perthame (University of Paris VI)  Jin  
February 13  Bing Wang (UW)  The extension problem of the mean curvature flow  Kim & Tran 
February 20  Eric Baer (UW)  Isoperimetric sets inside almostconvex cones  Kim & Tran 
February 27  Ben Seeger (University of Chicago)  Homogenization of pathwise HamiltonJacobi equations  Tran 
March 7  Mathematics Department Distinguished Lecture  Roger Temam (Indiana University)  On the mathematical modeling of the humid atmosphere  Smith 
March 8  Analysis/Applied math/PDE seminar  Roger Temam (Indiana University)  Weak solutions of the ShigesadaKawasakiTeramoto system  Smith 
March 13  Sona Akopian (UTAustin)  Kim  
March 27  Analysis/PDE seminar  Sylvia Serfaty (Courant)  MeanField Limits for GinzburgLandau vortices  Tran 
March 29  Wasow lecture  Sylvia Serfaty (Courant)  Microscopic description of Coulombtype systems  
April 3  Zhenfu Wang (Maryland)  Kim  
April 10  Andrei Tarfulea (Chicago)  Improved estimates for thermal fluid equations  Baer 
April 17  SiaoHao Guo (Rutgers)  TBA  Lu Wang

April 24  Jianfeng Lu  TBA  Li 
April 25 joint Analysis/PDE seminar  Chris Henderson (Chicago)  TBA  Lin 
May 1st  Jeffrey Streets (UCIrvine)  Bing Wang 
Abstracts
Sigurd Angenent
The HuiskenHamiltonGage theorem on compact convex solutions to MCF shows that in forward time all solutions do the same thing, namely, they shrink to a point and become round as they do so. Even though MCF is illposed in backward time there do exist solutions that are defined for all t<0 , and one can try to classify all such “Ancient Solutions.” In doing so one finds that there is interesting dynamics associated to ancient solutions. I will discuss what is currently known about these solutions. Some of the talk is based on joint work with Sesum and Daskalopoulos.
Serguei Denissov
We consider the patch evolution under the 2D Euler dynamics and study how the geometry of the boundary can deteriorate in time.
Bing Wang
We show that the mean curvature blows up at the first finite singular time for a closed smooth embedded mean curvature flow in R3. This is a joint work with H.Z. Li.
Eric Baer
We discuss a recent result showing that a characterization of isoperimetric sets (that is, sets minimizing a relative perimeter functional with respect to a fixed volume constraint) inside convex cones as sections of balls centered at the origin (originally due to P.L. Lions and F. Pacella) remains valid for a class of "almostconvex" cones. Key tools include compactness arguments and the use of classically known sharp characterizations of lower bounds for the first nonzero Neumann eigenvalue associated to (geodesically) convex domains in the hemisphere. The work we describe is joint with A. Figalli.
Ben Seeger
I present a homogenization result for pathwise HamiltonJacobi equations with "rough" multiplicative driving signals. In doing so, I derive a new wellposedness result when the Hamiltonian is smooth, convex, and positively homogenous. I also demonstrate that equations involving multiple driving signals may homogenize or exhibit blowup.
Andrei Tarfulea
We consider a model for threedimensional fluid flow on the torus that also keeps track of the local temperature. The momentum equation is the same as for NavierStokes, however the kinematic viscosity grows as a function of the local temperature. The temperature is, in turn, fed by the local dissipation of kinetic energy. Intuitively, this leads to a mechanism whereby turbulent regions increase their local viscosity and dissipate faster. We prove a strong a priori bound (that would fall within the LadyzhenskayaProdiSerrin criterion for ordinary NavierStokes) on the thermally weighted enstrophy for classical solutions to the coupled system.